Polygones réguliers

On appelle polygone (de poly- : plusieurs et –gone : angle) une figure fermée constituée de segments.


Si n est un entier supérieur ou égal à 3, un polygone à n côtés contient n segments et n sommets, qui sont les extrémités des segments, chaque sommet étant commun à exactement deux côtés parmi les n.


On dit qu’il est croisé si au moins deux côtés se coupent ailleurs qu’aux sommets. Sinon, il est dit non croisé.


Les polygones à 3, 4, 5, 6, 7, 8, 9, 10, 11 et 12 côtés s’appellent respectivement des triangles, quadrilatères, pentagones, hexagones, heptagones, octogones, ennéagones, décagones, hendécagones et dodécagones.


On appelle diagonale d’un polygone un segment joignant deux sommets non adjacents. On montre que, si n est le nombre de côtés, le nombre de diagonales est n(n+3)/2. Un polygone non croisé est dit convexe si toutes ses diagonales sont à l’intérieur de la surface délimitée par le polygone. Dans le cas contraire, donc si au moins une diagonale est à l’extérieur du polygone (non croisé), il est dit non convexe, ou encore concave.


On appelle polygone régulier un polygone dont les côtés sont de même longueur mais aussi tel que les sommets sont sur un même cercle (on dit que ces points sont cocycliques). Le cercle est donc circonscrit au polygone.


Les polygones réguliers à 3 et 4 côtés s’appellent respectivement des triangles équilatéraux et des carrés.


Les rayons d’un polygone régulier sont les segments joignant les sommets au centre du cercle circonscrit au polygone.

  • Questions :

N’hésitez pas à donner votre avis sur le sujet et à partager vos propres conseils en commentaire. Pour poster un commentaire, vous n’avez qu’à cliquer sur le titre de l’article.